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Phase turbulence in Rayleigh-Be´nard convection
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We present a three-dimensional simulation of Rayleigh-Be´nard convection in a large aspect ratioG560 with
stress-free boundaries for a fluid Prandtl numbers50.5. We find that a spatiotemporal chaotic state~phase
turbulence! emerges immediately above onset, which we investigate as a function of the reduced control
parametere. In particular we find that the correlation length for the vertical velocity field, the time averaged
convective current, and the mean square vorticity have power law behaviors near onset, with exponents given
by 21/2, 1, and 5/2 respectively. We also find that the time averaged vertical velocity and vertical vorticity
fields have the same~disordered! spatial characteristics as the corresponding instantaneous patterns for these
fields, and that there is no long-term phase correlation in the system. Finally, we present simple theoretical
explanations for the time averaged convective current as a function of the control parameter, and for the fact
that the time dependence of three global quantities~characterizing the dissipation of kinetic energy, the release
of internal energy by buoyancy, and entropy flow! is essentially the same.

PACS number~s!: 47.54.1r, 47.20.Lz, 47.20.Bp, 47.27.Te
al
a

l-
di

flu
n
a

p
-
th
o
ty
an
w
m

ity

d
ab
t

rs
-
re

ir

em

on-
ds
in

he
n to

te
hus
ran-

of
to
tone
ne
an
the
aos
ical
pa-
this

band
des

nal

s.
the
I. INTRODUCTION

The classical problem of Rayleigh-Be´nard convection has
a long and rich history, with many important experiment
theoretical, and simulation results obtained only in the p
decade@1,2#. In Rayleigh-Be´nard convection, a thin fluid
layer of thicknessd, confined between two horizontal para
lel plates, is heated from below. When the temperature
ference reaches a critical value ofDTc at which the buoy-
ancy force exceeds viscous and thermal dissipation, the
undergoes a transition from a spatially and temporally u
form conduction state to a two-dimensional convective p
allel roll state with a characteristic lengthlc;2d. In general,
the dynamics of a convective system depends on three
rameters: the Rayleigh numberR, which represents the rela
tion between the buoyancy and dissipative effects;
Prandtl numbers of the fluid, which represents the rati
between the kinematic viscosity and the thermal diffusivi
and the geometrical parameter of the container size
shape. Busse extensively studied the stability domain of t
dimensional straight parallel rolls as a function of wave nu
ber k, and Rayleigh numberR for many Prandtl numberss
in a laterally infinite system. He calculated the stabil
boundaries now known as the ‘‘Busse Balloon’’@3#. It is
well known that in a laterally infinite system with rigid-rigi
boundaries at the top and bottom plates, there exists a st
time-independent straight parallel roll state near the onse
convection for all Prandtl numberss. However, in the case
of free-freeboundaries at sufficiently low Prandtl numbe
(s,0.543), Zippelius and Siggia@4,5# and Busse and Bol
ton @6# in the early 1980’s discovered that parallel rolls a
unstable with respect to the skewed-varicose instabilityim-
mediatelyabove onset. An interesting implication of the

*Permanent address.
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results is that, since no particular horizontal wave vectorkW is
chosen as an orientation for steady parallel rolls, all of th

~whose magnitudes areukW u;kc , wherekc is the onset wave
number! have to compete near onset. Consequently, the c
vective state is chaotic in time at arbitrarily small Reynol
numbers, with an arbitrary orientation of the wave vectors
the isotropic plane of the fluid. For this latter reason, t
phenomenon is termed phase turbulence. This transitio
spatiotemporal chaos~STC! occurs at the critical Rayleigh
numberRc , where the bifurcation from the conduction sta
to an ordered convection state usually takes place. T
phase turbulence provides another example of a direct t
sition from a spatially uniform stationary state to STC@7#.
Other cases include the Ku¨ppers-Lortz transition@8# in
Rayleigh-Bénard convection, the Fre´edericksz transition in
liquid crystals@9,10#, and certain one-dimensional models
STC. Tribelsky@11# showed that such direct transitions
STC occur as a consequence of the existence of a Golds
mode ~and an associated, slowly decaying ‘‘Goldsto
band’’! in the system. The Goldstone mode results from
additional continuous symmetry in the system beyond
usual translations of the space-time coordinates. The ch
observed in such cases may be interpreted as a dynam
analog of second order phase transitions, with the order
rameter related to the amplitudes of turbulent modes. For
reason it has been calledsoft mode turbulence@10#. In the
case of phase turbulence discussed here, the Goldstone
describes the slow relaxation of the longwavelength mo

of the vertical component of the vorticityvW ~where vW [

¹W 3uW with uW the local fluid velocity!.
In this paper, we report the results of a three-dimensio

numerical study of phase turbulence in alarge aspect ratio
Rayleigh-Bénard cell with free-free boundary condition
This study is based on the Boussinesq approximation to
7909 ©2000 The American Physical Society
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7910 PRE 62HAO-WEN XI, XIAO-JUN LI, AND J. D. GUNTON
hydrodynamic equations, and is an extension of work p
sented in an earlier publication@7#. There are two aspects o
this study that are worth noting. First, phase turbulence o
occurs for large values of the aspect ratio,G[L/d, whereL
is the horizontal dimension andd is the thickness of the fluid
layer. If the aspect ratio is small~such as the case in ear
studies of the transition to temporal chaos in Rayleig
Bénard convection!, the spatial degrees of freedom are su
pressed, and phase turbulence does not occur. Second,
turbulence is an example ofweak turbulence, a term some-
times used to describe spatiotemporal chaos in a we
driven system, i.e., one for which a control parameter@in this
case the reduced Rayleigh number (DT2DTc)/DTc# is of
order 1 or smaller. This weak turbulence differs from t
fully developed, strong turbulence flow, in which the ener
is distributed over a large range of spatial and tempo
scales. The phase turbulence flow we discuss here has a
90% of its kinetic energy contained near the wave num
ukW u;kc .

The paper is organized as follows: In Sec. II we discu
the model, and give a brief discussion of our numerical te
niques. In Sec. III, we present quantitative results charac
izing the spatiotemporal chaotic patterns, including
power spectrums for the vertical velocity and vertical vort
ity fields. We also show that the time averaged vertical
locity and vertical vorticity fields have the same disorder
spatial characteristics as the corresponding instantaneous
terns for these fields. This implies that there is no long-te
phase correlation between patterns.

In Sec. IV, we give a detailed analysis of various spa
time averaged global quantities as functions of the con
parametere. In particular we find that the correlation leng
for the vertical velocity field, the time averaged convecti
current, and the mean square vorticity have power law
haviors near onset, with exponents given by21/2, 1, and
5/2, respectively. In Sec. V, we present results for the te
poral behavior of three space averaged global quanti
which characterize the dissipation of kinetic energy, the
lease of internal energy due to buoyancy, and the flow
entropy, respectively, and the vertical velocity at two diffe
ent positions. In Sec. VI, we provide a simple theory to e
plain the behavior of the time averaged convective curren
a function of the control parameter and the fact that the th
global quantities have almost identical temporal behavio
In Sec. V we give a short discussion of our results.

II. FORMULATION AND NUMERICAL PROCEDURES

In our three-dimensional simulation, we assume that
fluid satisfies the Boussinesq approximation. In this appro
mation, the temperature dependence of the fluid parame
~such as kinematic viscosity and thermal diffusivity! is ne-
glected, except for the thermal expansion effect respons
for buoyancy. In the energy balance equation the visc
dissipation term is also neglected in comparison with
conductive term. The dimensionless Boussinesq equati
which describe the evolution of the velocity fielduW
5(u,v,w) and the deviation of the temperature fieldu from
the conductive solution, can be written as

¹W •uW 50, ~1!
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]uW /]t1~uW •¹W !uW 52¹W p1sueW z1s¹W 2uW , ~2!

]u/]t1uW •¹W u5¹W 2u1wR, ~3!

wherep is pressure andeW z is a unit vector in the verticalz
direction. In Eqs.~1!–~3!, length and time have been mad
dimensionless in terms of the thickness of fluid layerd, and
the vertical thermal diffusion timetd5d2/k, respectively.
The velocity, pressure, and temperature have been resc
by d/td5k/d, r(d/td)25rk2/d2, and DT/R 5kn/agd3,
respectively. Herea is the coefficient of thermal expansion
k is the thermal diffusivity,n is the kinematic viscosity,r is
the fluid density, andg is the acceleration due to gravity. Th
dimensionless control parameters for the problem are
Rayleigh numberR,

R5aDTgd3/nk, ~4!

and Prandtl numbers,

s5n/k, ~5!

whereDT is the imposed temperature difference. In the id
alized limit of a laterally infinite system with free-fre
boundary conditions, the critical Rayleigh numberRc

527p4/4 and the onset wave numberkc5p/A2. In this pa-
per, the Prandtl number is chosen to bes50.5, with Ray-
leigh numbers in the range 0<e<0.5, where e5(R
2Rc)/Rc is the reduced Rayleigh number. We use me
points Nx3Ny3Nz52563256318 and uniform grid size
Dx5Dy560/256, andDz51/18. The system sizes areLx
5NxDx5Ly5NyDy560 andLz5NzDz51. Thus the aspec
ratio of the system (G5Lx /Lz5Ly /Lz) is G560 in our
simulation.

The well-known marker-and-cell~MAC! @12,13# finite-
difference technique is employed in our simulation. T
MAC method uses pressure and velocity as the primary
pendent variables, with the velocities, temperature, and p
sure located at the staggered mesh points. The basic sol
algorithm is accurate to first order in time and to seco
order in space for a uniform spatial mesh. The stress
~free-free! boundary conditions at the upper and lower s
faces~z50,1! are

w5
]u

]z
5

]v
]z

50. ~6!

The boundary condition for the velocities at the sidewalls
chosen to be no slip~rigid!, i.e., the normal velocity and the
tangential velocity at the sidewalls are zero,

uW uB50, ~7!

whereB denotes the boundary of the sidewall. The bound
conditions for the temperatureu on the upper and lowe
walls ~z50,1! and at the sidewalls are given by

uUz50,15
]u

]nU
B

50, ~8!

wheren is normal to the boundary of the sidewall. Thus t
temperature is fixed on the upper and lower walls, while
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PRE 62 7911PHASE TURBULENCE IN RAYLEIGH-BÉNARD CONVECTION
sidewalls are insulating. The time step required for numer
stability is determined by a standard linear stability analy
For given Rayleigh numberR and Prandtl numbers<1, we
obtain

Dt<S 1

s2111
D S 1

D221A0.5Rs2112~s2121!2D24D ,

~9!

where D225Dx221Dy221Dz22. For Dx5Dy560/256,
Dz51/18, s50.5, and R'Rc527p4/4, we have Dt5
3.131024.

To check our code, we have performed various tests. H
we present two examples. In the first case, we reproduced
steady parallel roll state near onset, by numerically solv
the time-dependent three-dimensional hydrodynamic eq
tions. The system was chosen to have an aspect rati
(60:60:1) and a Prandtl number of 5.0, with free-free bou
ary conditions. We compared our numerical results for
maximum vertical velocitywmax for several different values
of the control parametere, with the theoretical values give
by Ref. @14#. Our results are in very good agreement, i.
within 1.5% for 0,e,0.15, with the differences increasin
with increasing epsilon, as one would expect, since
theory begins to break down for largere. In the second ex-
ample, we checked our code by comparing results with
numerical work of Kirchartz and Oertel@15#. These authors
numerically studied steady cellular convection using rig
rigid boundary conditions with a Rayleigh number of 40
and a Prandtl number of 0.71, for an aspect ratio of a 10:4:1
system. We used exactly the same system with rigid-ri
boundary conditions, with similar grid points~we used
84336318; they used 81333317). The agreement of ou
results with theirs for the vertical velocityw(x,y52,z
50.5) as a function ofx is excellent@Fig. 8~b! in their pa-
per#.

III. CHARACTERIZATION OF SPATIOTEMPORAL
CHAOS

We first discuss the structure factors, spatial correlat
functions, and correlation lengths for the vertical veloc
and vertical vorticity fields, respectively, for one value of t
control parametere50.1. The detailed description of sever
space-time averaged global quantities as a function of
control parametere is presented in Sec. IV.

A. Vertical velocity field

Figure 1~a! shows a typical instantaneous image of t
vertical velocity field at the middle plane of the ce
w(x,y,z51/2,t) from the numerical simulation ate50.1.
Dark regions correspond to hot rising fluid and white regio
to cold descending fluid. The apparently random pattern
comprised of patches of different locally orientation rolls a
many defects. The number of defects and orientations of
rolls fluctuates both in time and space. Figure 1~b! shows the
corresponding two-dimensional structure factorS(kW ,t) for
the instantaneous image.~The structure factor is the powe
spectrum in Fourier space.! One of the interesting features
that the intensity of the spectrumS(kW ,t) appears to be iso
al
.
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tropic azimuthally. Figure 2 shows the corresponding tim
averaged and azimuthally averaged power spectrumS(k).
We see that the power spectrum is skewed and peaked
wave numberkmax,kc .

In order to estimate the degree of spatial correlation in
instantaneous pattern, we also calculate the spatial auto
relation function for the vertical velocityw(x,y,z51/2,t),
which is defined as

C~rW,t !5^w~rW8,t !w~rW81rW,t !&/^w~rW8,t !w~rW8,t !&, ~10!

whererW5(x,y) and the bracket̂ & denotes*dx8dy8. @This
spatial autocorrelation function is of course related to
structure factor in Fourier space by the relationC(rW,t)
5(kWS(kW ,t)exp(ikW•rW). These two methods are equivale
ways to analyze the spatial patterns.# The time averaged and
azimuthally averaged spatial autocorrelation functionC(r ) is
shown in Fig. 3. This reveals a sharp central peak an
decaying oscillatory tail, and the peak-to-peak amplitude
the oscillatory tail can be approximated by a decaying ex
nential exp(2r/j). The correlation lengthj'2.36d obtained
from this fit is in reasonable agreement with estimates
tained from defining a correlation length from the variance
the power spectrumS(k) in Fourier space, which isj

FIG. 1. ~a! A typical instantaneous image of the vertical veloci
field at the middle plane of the cellw(x,y,z51/2,t) with e50.1.
Dark regions correspond to hot rising fluid and white regions

cold descending fluid.~b! The corresponding structure factorS(kW ,t)
for the instantaneous image, where the axes arekx /kc andky /kc .
~The structure factor is the power spectrum in Fourier space.!

FIG. 2. The time averaged and azimuthally averaged po
spectrumS(k) at e50.1. The dashed line is a guide to the eye.
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7912 PRE 62HAO-WEN XI, XIAO-JUN LI, AND J. D. GUNTON
'2.48d @see Sec. IV C for details#. We also note that in ou
earlier work we found that near onset the time avera
structure factor satisfies a scaling behavior with respec
this correlation length, i.e.,kS(k)/j5F@(k2kmax)j#. Here
F is the scaling function, and we have normalized the in
gral of S(k) overk space to be unity. Further details of the
results forS(k) andj were given in our previous publicatio
@7#.

Another interesting issue is whether the structure o
time-averaged pattern is a featureless disordered state o
an inherent ordered symmetry. Although each instantane
pattern is highly disordered, as shown in Fig. 1~a!, the nature
of the time-averaged pattern is not so obvious. Depending
whether or not there is a phase correlation between e
pattern, the time-averaged pattern can either display a
tially periodic or spatially disordered pattern. For examp
in the Faraday wave experiment, where a layer of fluid w
a free surface is periodically driven in the direction normal
the surface, the time-averaged spatiotemporal chaotic im
show strikingly regular structures@16#. In order to see
whether the time averaged patterns show any spatial ord
our system, we investigated the time averaged pattern for
vertical velocity field^w(x,y,z51/2)&T ,

^w~x,y,z51/2!&T5
1

T E
0

T

w~x,y,z51/2,t !dt, ~11!

where the bracketŝ &T denotes the time average. Qualit
tively we observe that there is no significant difference
tween the time averaged pattern and a typical instantan
pattern. Both patterns are highly disordered in real space
are approximately isotropic azimuthally in Fourier space.
order to study quantitatively the time averaged pattern,
calculated the spatial autocorrelation function for the ti
averaged pattern, and compared this with the time avera
autocorrelation function of the instantaneous patterns. Fig
3 shows the two azimuthally averaged autocorrelation fu
tions. We observe that the two functions are almost identi
This suggests that the time averaged pattern has the s
spatial characteristics as a typical instantaneous pattern,
that there is no long-term phase correlation in the syst

FIG. 3. The azimuthally averaged autocorrelation functionC(r )
for the vertical velocityw(x,y,z51/2,t) at e50.1. The diamonds
are the time averaged autocorrelation functionC(r ) of the instan-
taneous patterns; the pluses are the autocorrelation functionC(r ) of
the time averaged pattern. The dashed line is a guide to the e
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However, the maximum value of the time averaged veloc
is much smaller than the value of each individual image.

B. Vertical vorticity field

Next, we analyze the patterns for the vertical vortic
field vz , wherevz5]xv2]yu. Figure 4~a! shows a disor-
dered, instantaneous image of the vertical vorticity field
the middle plane of the cellvz(x,y,z51/2,t), corresponding
to Fig. 1~a!. Dark and white regions indicate clockwise an
counterclockwise rotations, respectively. One observes
the vorticity field is interspersed with many defects, and t
the defects fluctuate both in time and space. Figure 4~b!
show the corresponding two-dimensional structure fac
Sv(kW ,t), which reveals a broad azimuthally isotropic cent
peak and a decaying tail. Figure 5 shows the correspond
time averaged and azimuthally averaged power spect
Sv(k). We see that the power spectrum has a broad pea
small wave numbersk and a decaying tail for large wav
numbersk. The time averaged and azimuthally averaged s
tial correlation Cvv(r ) is shown in Fig. 6. This shows a
sharp localized central peak, and yields a decay lengthjv

'0.85d obtained from fitting to exp(2r/jv). This value is
again in good agreement with the valuejv50.848d obtained
from the variance ofSv(k).

.

FIG. 4. ~a! A disordered, instantaneous image of the vertic
vorticity field at the middle plane of the cellvz(x,y,z51/2,t), cor-
responding to Fig. 1~a!. Dark and white regions indicate clockwis
and counterclockwise rotations, respectively.~b! The corresponding

two-dimensional structure factorSv(kW ,t), where the axes arekx /kc

andky /kc .

FIG. 5. The time averaged and azimuthally averaged po
spectrumSv(k) at e50.1. The dashed line is a guide to the eye
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PRE 62 7913PHASE TURBULENCE IN RAYLEIGH-BÉNARD CONVECTION
We have also investigated the time averaged pattern
the vertical vorticity fieldvz(x,y,z51/2,t). As in the case of
the vertical velocity pattern, we find that there is no sign
cant difference between the time averaged pattern and a
cal instantaneous pattern. Both the time averaged ver
vorticity image and each instantaneous image have the s
random appearance in real space. We also calculated the
tial autocorrelation function for the time averaged patte
and compared it with the time averaged autocorrelation fu
tion we obtained above. Both the azimuthally averaged c
relation function for the time averaged image and the co
sponding time averaged and azimuthally averag
correlation function for the instantaneous images are sh
in Fig. 6. We find that the two functions are almost identic
as we found for the vertical velocity.

IV. SPACE AND TIME AVERAGED QUANTITIES
AS FUNCTIONS OF THE CONTROL PARAMETER

In this section, we investigate various space and time
eraged global quantities as a function of the control para
eter. In particular, we examine the Nusselt number Nu,
spatial correlation lengths for the vertical velocity and ve
cal vorticity fields, and the mean square vorticity,V, as a
function of e.

A. Nusselt number

The Nusselt number Nu511^wu&/R is the ratio of heat
transport with and without convection, and is closely rela
to the conversion of potential energy into kinetic energy
sociated with the transfer of heats^wu&. Here bracketŝ &
5* dxdydz/V denote a volume averaging over the ent
system. The convective currentJ of the system is given by
(Nu21). It is well known that for a steady parallel roll stat
the convective current increases linearly withe/g2 near the
onset of convection, whereg250.5 for free-free boundary
conditions. We find that the time averaged convective c
rent in phase turbulence is consistent with a linear relat
i.e., ^(Nu21)&T5e/gPT . However, we havegPT51.27

FIG. 6. The azimuthally averaged autocorrelation funct
Cv(r ) for the vertical vorticityv(x,y,z51/2,t) at e50.1. The dia-
monds are the time averaged autocorrelation functionCv(r ) of the
instantaneous patterns; the pluses are the autocorrelation fun
Cv(r ) of the time averaged pattern. The dashed line is a guid
the eye.
or
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60.03, which is much larger than that of a parallel roll sta
A theoretical explanation for this behavior is given in Se
VI. Near the onset of convection the Nusselt number is a
closely related to the vertical velocity field, since (Nu21)
}* *@w(x,y,z51/2,t)#2dxdy/A. Thus we have^w(x,y,z
51/2,t)2&}e, „where^ & denotes (1/T)*dt(1/A)*dxdy….

B. Mean square vorticity

We now investigate another global quantity, related to
vertical vorticity field, as a function ofe. We define this
quantityV2D andV3D in two and and three dimensions a

V2D~ t !5
1

A E E vz
2~x,y,z51/2,t !dxdy, ~12!

V3D~ t !5
1

V E E E vz
2~x,y,z,t !dxdydz, ~13!

respectively, wherevz5(¹W 3uW )z5]xv2]yu. HereA andV
are the horizontal area and the volume of the Be´nard cell,
respectively. Clearly,V2D5V3D[0 in a parallel roll state,
sinceu(x,y,z,t)5u(x,z,t), v(x,y,z,t)50, andw(x,y,z,t)
5w(x,z,t). V2D(x,y,z51/2,t) is reminiscent of a Kolmog-
orov energy formulation in two-dimensional flow system
@17#, in which V acts as a ‘‘vorticity energy.’’ This mean
square vorticity may also serve as an order parameter w
characterizes the transition from an ordered two-dimensio
parallel roll state to a spatiotemporal chaotic state. Th
functions can both be fit by a power law behavior, given
e5/2. The resulting straight lines of the best power-law
V2D

2/5 vs e andV3D
2/5 vs e are shown in Fig. 7. From Fig. 7, w

note that the results forV2D andV3D are virtually the same.
This suggests that the vertical vorticityvz(x,y,z,t) is inde-
pendent of the vertical variablez. This is exactly what one
would expect, since Zippelius and Siggia@4,5# showed that
the leading contribution to the vertical vorticity is indepe
dent of z. However, a theoretical explanation of the pow
law behaviore5/2 is much more complicated and will b
presented elsewhere@18#.

ion
to

FIG. 7. The mean square vorticitiesV2D
2/5 vs e ~diamond! and

V3D
2/5 vs e ~plus!. The dash-dotted line is the fitting form ofV2/5

55.47e.
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C. Correlation lengths

Spatiotemporal chaos generally results from a breakdo
of global spatial coherence. However, a macroscopiccoher-
ence length—a length scale below which the pattern appe
coherent—may still exist. Here we study two such lengt
namely, the spatial correlation lengths of the vertical veloc
w(x,y,z51/2,t) and vertical vorticityvz(x,y,z51/2,t), as
functions of the control parametere. We define a correlation
lengthj via the variance of the structure factor as

j5~^k2&2^k&2!21/2, ~14!

where^k& and ^k2& are defined as

^k&5

E S~kW ,t !ukW ud2kW

E S~kW ,t !d2kW
, ~15!

^k2&5

E S~kW ,t !ukW u2d2kW

E S~kW ,t !d2kW
. ~16!

We first investigate the correlation length for the vertic
velocity field. Assuming a power law behavior ofj5j0(e
2ec)

2n, we find that the best fits are,n50.47260.016, j0
50.8260.04, andec50.005 @7#. The nonzero valueec can
probably be attributed to the finite size of the system. T
behavior of the correlation length is also consistent with
mean field power law exponent ofn50.5 and j050.78.
Note that the value ofj0 is a factor of 3/2 larger than th
valuej05A8/3p250.52, as calculated from the curvature
the marginal stability curve.

While the correlation length of the vertical velocity fie
w(x,y,z51/2,t) diverges near onset asj;e21/2, suggesting
a supercritical transition from the conduction state to
convective state, the behavior of the correlation length of
vertical vorticity fieldvz(x,y,z51/2,t) turns out to be quite
difficult to obtain. Using the same definition via the varian
of the structure factor of the vorticity field as above, w
calculate and plot the correlation lengthjv as a function ofe
in Fig. 8. We find that this correlation length does not app

FIG. 8. The correlation lengthjv of the vertical vorticity field
vz(x,y,z51/2,t) vs e. The dashed line is a guide to the eye.
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to obey a simple power law behavior, asj does. More data
close toe50 are needed to reveal its asymptotic behavio

V. TEMPORAL BEHAVIOR

A. Global variables

Before presenting the results of our simulation of the te
poral behavior, we first consider some general hydrodyna
and thermodynamic relations which prove useful for a d
scription of Rayleigh-Be´nard convection . We take the scal
product ofuW , and both sides of the momentum equation@Eq.
~2!#, and multiply both sides of the energy equation@Eq. ~3!#
by u. We then add the resulting equations term by term a
integrate over the whole system. Taking into account
boundary conditions as well as the incompressibility con
tion, we obtain the evolution equation

d

dt
K~ t !5@F1~ t !2F2~ t !#2@F3~ t !2F4~ t !#, ~17!

whereK(t) is defined asK(t)5 1
2 ^uW •uW 1u2&, and the brack-

ets^ &5(1/V)*dxdydzdenote a spatial average over the e
tire volume. We note next that the dynamics of the glob
quantity K(t) involves both dissipative and convective e
fects. Each of these contributions contains an irrevers
part: ~a! F15 1

2 s^(]ui /]xj1]uj /]xi)
2& corresponds to the

kinetic energy dissipated by viscosity. Herei and j are
dummy indices over which a summation is performed a
ui5(u,v,w),xj5(x,y,z) ~b! F25s^wu& is the internal en-
ergy released by the buoyancy force.~c! F35^¹W u•¹W u& cor-
responds to the dissipative thermal energy, i.e., generatio
entropy due to temperature fluctuations.~d! F45R^wu&
5RF2 /s represents the entropy flow due to the vertical v
locity.

In the special case of a stationary state, one recovers
conditionsF15F2 andF45F3, which are expressions of th
balance between two competing mechanisms. It is worth n
ing that the Nusselt number Nu defined earlier can be
pressed in terms ofF2 as Nu511F2 /(sR). Also, F2 and
F4 are not independent quantities, sinceF45RF2 /s. Our
main purpose in introducing these global quantities is t
they provide us with a simple description of ‘‘energy ba
ance’’ in Rayleigh-Be´nard convection, and can be used
characterize the temporal dynamics.

It is convenient to rescale these quantities, withF1

5sRcF18 , F25sRcF28 , F35RRcF38 , and F45RRcF48 , so
that we haveF185F285F385F48 in a steady state. We showe
representative time series of the quantities,F18(t), F28(t), and
F38(t) for e50.2 in our previous publication@7#. The most
important implication of that figure is the apparently chao
behavior of these quantities over the time interval that
accessible to us. Indeed, in our earlier work we used
Grassberger-Procaccia method@19# to calculate the fracta
dimensionsD f for these quantities, and foundD f51.42
10.02 @7#. We also noted that the time dependence of th
three quantities is almostexactly the same, i.e.,F18(t)
5F28(t)5F38(t). In fact, this is the case for all thee values
studied in the range 0<e<0.5. This is a surprising resul
considering the irregular spatiotemporal state we observ
This result also implies that the quantityR[sF3 /(2F2
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2F1)5RF38/(2F282F18), which is often used in a variationa
formulation to determine the critical Rayleigh number for t
onset of convection, behaves as if the system is in a stat
ary state andR5R. This suggests that there are two attra
tors for a givene ~or R) near onset, one for the steady sta
parallel roll case, and the other for the spatiotemporal cha
state. In Sec. VI, we provide a theory to explain whyF18(t)
5F28(t)5F38(t).

We conclude this section by noting that we have a
calculated the Fourier spectrum of these global variab
Figure 9 shows this spectrum for the global variableF18(t). It
is interesting to note that this spectrum behaves likef 22 ~cf.
the dashed line! for large frequencies, which is characteris
of random Browian motion.

B. Local variables

It is also useful to consider the temporal behavior of lo
variables. In particular, we studied the local vertical veloc
w(x,y,z,t) as a function of time at two different spatia
points. Figure 10 shows the time series for the vertical

locity w(25,121
2 , 11

12 ). The power spectrum for this local var
able is very different from that for the global variable, as c
be seen in Fig. 11. At low frequencies it behaves l
exp(21.25f ), and at large frequencies has the same form
f 22 as for the global variable.

FIG. 9. The power spectrum of the global quantityF18(t) as a
function of frequencyf. The dashed line is the fitting form o
P( f ); f 22.

FIG. 10. Time series of the local vertical velocit

w(25,121
2 , 11

12 ,t).
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VI. THEORY

Finally, we present a simple theory to explain the fact th
F18(t)5F28(t)5F38(t) and to evaluate the time averaged co
vective current, which satisfiesJ5e/gPT , in phase turbu-
lence. Our theory is based on the assumption that only th
modes whose wave number is in the vicinity ofkc are ex-
cited. Near onset, it is well known that the velocity fielduW

5(uW' ,w)5(u,v,w) and the temperature deviationu can be
approximated by order parametersc(rW,t) andz(rW,t) in two-
dimensional spacerW multiplied by known,z-dependent pref-
actors. More precisely, one may take as an approxima
that @20–22#

@uW' ,w,u#.@u0¹W 'c1¹W 'z~rW,t !3eW z ,w0c,u0c#, ~18!

where¹W ' is the gradient operator in two-dimensional spa
and the prefactors for free-free boundary conditions~at z
50,1) are

u0~z!52A3cos~pz!, w0~z!5A3p sin~pz!,

u0~z!5~9A3p3/2!sin~pz!. ~19!

With this approximation, it is straightforward to show tha

F18~ t !5~2/9!O02~10/9p2!O11~8/9p4!O2 , ~20!

F28~ t !5O0 , ~21!

F38~ t !5~2/3!O02~2/3p2!O1 , ~22!

where we have appliedR.Rc527p4/4 and

On5A21E drWc~¹W '
2 !nc. ~23!

Now assume that only those modes which are in the vicin
of kc5p/A2 are excited near onset. One may thus repl
¹'

2 →2kc
2 . This leads to

F18~ t !5F28~ t !5F38~ t !5O0 , ~24!

FIG. 11. The power spectra of the local vertical veloc

w(25,121
2 , 11

12 ,t) as a function of frequencyf. The dashed lines are
the fitting form ofP( f ); f 22 for large f, and the dash-dotted line
areP( f );exp@21.25f # for small f.
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in agreement with our numerical result. Note, however, t
the power spectrum~structure factor! of the excited modes
has a finite width. Consequently, these three quantities
not exactly the same.

Within the approximation of Eq.~19!, the three-
dimensional hydrodynamical equations~1!–~3! can be ap-
proximated by the two-dimensional generalized Sw
Hohenberg~GSH! model @20–22#. In the GSH model, the
order parameterc(rW,t) satisfies

t0@]c/]t1UW •¹W 'c#5@e2~j0
2/4kc

2!~¹W '
2 1kc

2!2#c2N@c#.
~25!

Here UW (rW,t) is the mean flow velocity given byUW (rW,t)
5¹W 'z(rW,t)3eW z , in which

@]/]t2s¹W '
2 #¹W '

2 z5gmeW z•@¹W '~¹W '
2 c!3¹W 'c#. ~26!

The nonlinearN@c# term has been evaluated in Fouri
space at onset@21#,

N@c#~kW !5 (
kW2 ,kW3

g~ k̂• k̂2!ĉ* ~kW2 ,t !ĉ~kW3 ,t !ĉ~kW1kW22kW3 ,t !,

~27!

where ĉ(kW ,t) is the Fourier component ofc(rW,t) and the
coupling constantg(cosa) is given in Ref.@21# with a the
angle betweenkW and kW2. For free-free boundary conditions
one hast052(11s21)/3p2, j0

258/3p2, and gm56. The
time averaged convective currentJ5^Nu&T21 is given by

J5
1

AE drW ^c2~rW,t !&T5(
kW

^ĉ* ~kW ,t !ĉ~kW ,t !&T , ~28!

where ^ &T5T21*dt denotes time average. To calculateJ,
we multiply both sides of Eq.~25! by c(rW,t) and then take
the spatial and time averages. This leads to, in Fourier sp

(
kW

@e2j0
2~k22kc

2!2/4kc
2#^ĉ* ~kW ,t !ĉ~kW ,t !&T

2 (
kW1 ,kW2 ,kW3 ,kW4

g~ k̂1• k̂2!

3^ĉ* ~kW1 ,t !ĉ* ~kW2 ,t !ĉ~kW3 ,t !ĉ~kW4 ,t !&TdkW11kW2 ,kW31kW4

50. ~29!

Note that the contribution from theUW •¹W 'c term in Eq.~25!
can be converted into a surface term which vanishes un
boundary conditions.

We now propose a simple model for phase turbulen
We assume that a phase turbulent state is composed of m
parallel rolls, whose wave numbers lie on the ring ofukW u
5kc , and whose amplitudes are all equal, but whose pha
and whose orientations are random in time. More precis
we assume that

ĉ~kW ,t !5c0~ t !dk,kc(i 51

M

eif(b i ,t)da,b i (t)
, ~30!
t
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-
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wherec0(t) and f(b i ,t) are the amplitude and the phas
of the selected modes,k5kc and b i(t) are the amplitude,
and the angles of their corresponding wave numbers, w
M is the total number of the modes anda is the angle be-
tween kW and some reference direction. Since Nu21
5(kWuĉ(kW ,t)u25Mc0

2(t) has a well-defined time average
value with small fluctuations@7#, we expect the same behav
ior for c0(t). But we speculate that both the phasesf(b i ,t)
and the angular distribution$b i(t)% are random in time,
which leads to the spatiotemporal chaotic behavior in ph
turbulence. Note that this form ofĉ(kW ,t) is also consistent
with the corresponding one for steady states. For exam
one hasM52, c05const,f(b i ,t)5const, andb i5 ip with
i 50 and 1 for a parallel roll state, andM56, c05const,
f(b i ,t)5const, andb i5 ip/3 with i 50,1, . . . ,5 for ahex-
agonal state@21#. For phase turbulence, we takeM→1`.

We now use this model to calculate the time averag
convective current from Eq.~29!. The first term can be easily
evaluated aseJ. Note that there are only three possibilitie
for the constraintkW11kW25kW31kW4 in the second term to be
satisfied on a ring:~a! If kW11kW250, thenkW31kW450. ~b! if
kW1ÞkW2 andkW11kW2Þ0, then eitherkW35kW1 andkW45kW2 or kW3

5kW2 and kW45kW1; or, ~c! if kW15kW2, then kW35kW45kW1. It is
more convenient to express these constraints in terms
their angles, which can be summarized, correspondin
as ~a! da2 ,a11pda4 ,a31p , ~b! (12da2 ,a11p2

da2 ,a1
)(da3 ,a1

da4 ,a2
1da3 ,a2

da4 ,a1
), and ~c!

da2 ,a1
da3 ,a1

da4 ,a1
. Now inserting Eq.~30! into the second

term of Eq.~29!, and applyingf(b i1p)52f(b i ,t) @since
ĉ* (kW ,t)5ĉ(2kW ,t)# and these constraints, after some alg
bra one finds that the second term is simply
2M2gM^c0

4(t)&T with

gM5g~21!S 12
2

M D2
1

M
g~1!

1
2

M2 (
i , j 51

M

^g@cos„b i~ t !2b j~ t !…#&T . ~31!

Here we have decoupled̂ c0
4(t)&T and ^g@cos„b i(t)

2b j (t)…#&T . SinceJ5M ^c0
2(t)&T , if one neglects the fluc-

tuations ofc0(t), one has thenM2^c4(t)&T.J2. From Eq.
~29!, this leads to the solution for the time averaged conv
tive current

J.e/gM , ~32!

in addition to the conduction solutionJ50. This solution
reproduces the known results@21# for both parallel rolls with
g25g(21)1 1

2 g(1) and hexagons withg65 1
6 @6g(21)

14g(2 1
2 )14g( 1

2 )1g(1)#. For phase turbulence, we ex
pect thatb i(t)2b j (t) distributes uniformly between@0,2p#.
Taking M→` and replacing( i 51

M →(M /2p)*0
2pda, one

finds from Eq.~31! that
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gPT5g~21!1
2

pE0

p

da g~cosa!50.855922

10.0458144s2110.0709326s22, ~33!

wheres is the Prandtl number, and the explicit formula f
g(cosa) is given in Ref.@21#. For s50.5 as in our study,
this simple theory givesJ5e/gPT with gPT.1.2313, very
close to our numerical resultgPT.1.2760.03, as discusse
in Sec. IV A. Considering all the approximations we ha
made, such a good agreement is very encouraging.

However, this simple model apparently misses two imp
tant features of phase turbulence@18#. The first is the lack of
the mean square vorticity. Since allkW is lie on a single ring in
our model, the vorticity is identically zero. This, however,
not born out by our numerical calculations. Second,
structure factor from our numerical calculations has a fin
width near its peak position, which leads to a significa
reduction on the value ofJ. An improved theory will be
presented elsewhere@18#.

VII. SUMMARY

In summary, we have presented a three-dimensional si
lation of Rayleigh-Be´nard convection in a large aspect rat
G560 with stress-free boundaries for a fluid Prandtl num
s50.5. We have investigated the spatiotemporal behavio
a function of the reduced control parametere near the onse
of the second order transition. In particular,we calculated
spatial correlation functions and Fourier spectrums of
n-

tt.

,

-

e
e
t

u-

r
as

e
e

chaotic pattern as functions of the control parametere. The
spatial two-point correlation length for the vertical veloci
field is consistent withj;e21/2 , while the spatial correlation
length for the vertical vorticity requires further investigatio
We also found that the time averaged convective currenJ
and the time averaged vorticity currentV have power law
behaviors given byJ;e1/2 and V;e5/2. Finally, we pre-
sented an argument which predicts that three global qua
ties which can be used to characterize the energy balanc
phase turbulence should have essentially the same time
pendence near onset. We also explained the behavior o
time averaged convective current as a function ofe. An im-
proved version of this calculation which also predicts t
behavior of the mean square vorticity as a function ofe, will
be presented elsewhere. Finally, we note that further stud
the structure factor for the vertical vorticity for larger aspe
ratios is necessary in order to obtain a better understan
of this function and its associated correlation length.
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